Convertir desde Hexadecimal (Base 16) a Binario (Base 2)

Realiza la conversión de números entre los distintos sistemas numéricos.

Hexadecimal (Base 16) = Binario (Base 2)

Convertir desde Binario (Base 2) a Hexadecimal (Base 16)

Información sobre las unidades de conversión:

Acerca de Hexadecimal (Base 16)

El sistema hexadecimal reduce un número de ocho bits a sólo dos dígitos hexadecimales. Esto reduce la confusión que se puede generar al leer largas cadenas de números binarios y la cantidad de espacio que exige la escritura de números binarios.

Acerca de Binario (Base 2)

El sistema binario es una técnica de numeración donde solo se utilizan dos dígitos, el 0 y el 1. Suele emplearse particularmente en la informática. Es decir, este método se vale solo de dos símbolos, la unidad y el cero. Cualquier número puede expresarse tanto en el sistema decimal como en el binario.

Hexadecimal (Base 16) vs Binario (Base 2)

Hexadecimal (Base 16)Binario (Base 2)
00
11
210
311
4100
5101
6110
7111
81000
91001
a1010
b1011
c1100
d1101
e1110
f1111

¿Cómo se convierte de Hexadecimal (Base 16) a Binario (Base 2)?

Nota: Para convertir un número en formato hexadecimal (base 16) a cualquier otra base, primero debemos convertir el valor hexadecimal a base decimal (base 10), para ello debemos realizar los siguientes pasos:

  1. Identifique cada dígito del número hexadecimal.
  2. Calcule la posición de cada dígito. Empiece desde el dígito más a la derecha, que tendrá una posición de 0. Cada dígito a la izquierda tendrá una posición incremental de 1 (1, 2, 3, etc.).
  3. Calcule el valor decimal de cada dígito multiplicándolo por la base (16) elevada a la posición del dígito. Por ejemplo: dígito * 16^posición.
  4. Sume los valores obtenidos en el paso anterior para obtener el número decimal equivalente.

Aplicando estos pasos al número 9F hexadecimal:

  1. 9 y F son los dígitos.
  2. Desde el más a la derecha, la posición es 0 y 1.
  3. 9 * 16^1 = 144; F (que equivale a 15 en decimal) * 16^0 = 15.
  4. 144 + 15 = 159 decimal.

Entonces, 9F hexadecimal = 159 decimal.

Proceso de conversión de un número hexadecimal o base 16 a numero decimal o numero de base 10.

Nota: Para convertir un número decimal (base 10) a numero binario (base 2), debemos realizar los siguientes pasos:

  1. Dividir sucesivamente el número decimal entre 2 y anotar los restos de las divisiones.
  2. El proceso finaliza cuando el resultado de la división es 0.
  3. Los restos de las divisiones deben ser escritos en orden inverso al que fueron obtenidos, ya que representan los pesos de los dígitos binarios correspondientes.

Aplicando estos pasos al número 159 decimal:

A continuación, se muestra un ejemplo de cómo convertir el número 159 de base decimal a base binaria:

  1. Dividir 159 entre 2: 159 ÷ 2 = 79 con un resto de 1.
  2. Dividir 79 entre 2: 79 ÷ 2 = 39 con un resto de 1.
  3. Dividir 39 entre 2: 39 ÷ 2 = 19 con un resto de 1.
  4. Dividir 19 entre 2: 19 ÷ 2 = 9 con un resto de 1.
  5. Dividir 9 entre 2: 9 ÷ 2 = 4 con un resto de 1.
  6. Dividir 4 entre 2: 4 ÷ 2 = 2 con un resto de 0.
  7. Dividir 2 entre 2: 2 ÷ 2 = 1 con un resto de 0.
  8. Dividir 1 entre 2: 1 ÷ 2 = 0 con un resto de 1.

Los restos de las divisiones son escritos en orden inverso: 10011111.

Por lo tanto, el número 159 en base decimal se convierte en 10011111 en base binaria.

Explicación de los pasos a seguir para convertir un numero de base 10 (Decimal) a un numero de base 2 (Binario).

Tabla de conversión de Hexadecimal (Base 16) a Binario (Base 2)

Hexadecimal (Base 16) Binario (Base 2)
11
210
311
4100
5101
6110
7111
81000
91001
a1010
b1011
c1100
d1101
e1110
f1111
1010000
1110001
1210010
1310011
1410100
1510101
1610110
1710111
1811000
1911001
1a11010
1b11011
1c11100
1d11101
1e11110
1f11111
20100000
21100001
22100010
23100011
24100100
25100101
26100110
27100111
28101000
29101001
2a101010
2b101011
2c101100
2d101101
2e101110
2f101111
30110000
31110001
32110010
33110011
34110100
35110101
36110110
37110111
38111000
39111001
3a111010
3b111011
3c111100
3d111101
3e111110
3f111111
401000000
411000001
421000010
431000011
441000100
451000101
461000110
471000111
481001000
491001001
4a1001010
4b1001011
4c1001100
4d1001101
4e1001110
4f1001111
501010000
511010001
521010010
531010011
541010100
551010101
561010110
571010111
581011000
591011001
5a1011010
5b1011011
5c1011100
5d1011101
5e1011110
5f1011111
601100000
611100001
621100010
631100011
641100100
651100101
661100110
671100111
681101000
691101001
6a1101010
6b1101011
6c1101100
6d1101101
6e1101110
6f1101111
701110000
711110001
721110010
731110011
741110100
751110101
761110110
771110111
781111000
791111001
7a1111010
7b1111011
7c1111100
7d1111101
7e1111110
7f1111111
8010000000
8110000001
8210000010
8310000011
8410000100
8510000101
8610000110
8710000111
8810001000
8910001001
8a10001010
8b10001011
8c10001100
8d10001101
8e10001110
8f10001111
9010010000
9110010001
9210010010
9310010011
9410010100
9510010101
9610010110
9710010111
9810011000
9910011001
9a10011010
9b10011011
9c10011100
9d10011101
9e10011110
9f10011111
a010100000
a110100001
a210100010
a310100011
a410100100
a510100101
a610100110
a710100111
a810101000
a910101001
aa10101010
ab10101011
ac10101100
ad10101101
ae10101110
af10101111
b010110000
b110110001
b210110010
b310110011
b410110100
b510110101
b610110110
b710110111
b810111000
b910111001
ba10111010
bb10111011
bc10111100
bd10111101
be10111110
bf10111111
c011000000
c111000001
c211000010
c311000011
c411000100
c511000101
c611000110
c711000111
c811001000
c911001001
ca11001010
cb11001011
cc11001100
cd11001101
ce11001110
cf11001111
d011010000
d111010001
d211010010
d311010011
d411010100
d511010101
d611010110
d711010111
d811011000
d911011001
da11011010
db11011011
dc11011100
dd11011101
de11011110
df11011111
e011100000
e111100001
e211100010
e311100011
e411100100
e511100101
e611100110
e711100111
e811101000
e911101001
ea11101010
eb11101011
ec11101100
ed11101101
ee11101110
ef11101111
f011110000
f111110001
f211110010
f311110011
f411110100
f511110101
f611110110
f711110111
f811111000
f911111001
fa11111010
fb11111011
fc11111100
fd11111101
fe11111110
ff11111111
100100000000
101100000001
102100000010
103100000011
104100000100
105100000101
106100000110
107100000111
108100001000
109100001001
10a100001010
10b100001011
10c100001100
10d100001101
10e100001110
10f100001111
110100010000
111100010001
112100010010
113100010011
114100010100
115100010101
116100010110
117100010111
118100011000
119100011001
11a100011010
11b100011011
11c100011100
11d100011101
11e100011110
11f100011111
120100100000
121100100001
122100100010
123100100011
124100100100
125100100101
126100100110
127100100111
128100101000
129100101001
12a100101010
12b100101011
12c100101100