Convert from Octal (Base 8) to Hexadecimal (Base 16)
Perform the conversion of numbers between different numerical systems.
Octal (Base 8) = Hexadecimal (Base 16)
Information about conversion units:
About Octal (Base 8)
The octal system is the positional numeral system with a base of 8, using the Arabic-Indic digits: 0, 1, 2, 3, 4, 5, 6, 7. In computing, octal numbering is sometimes used instead of hexadecimal. It has the advantage of not requiring symbols other than digits.
About Hexadecimal (Base 16)
The hexadecimal system reduces an eight-bit number to just two hexadecimal digits. This reduces the confusion that can arise from reading long strings of binary numbers and the amount of space required to write binary numbers.
Octal (Base 8) vs Hexadecimal (Base 16)
Octal (Base 8) | Hexadecimal (Base 16) |
---|---|
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
10 | 8 |
11 | 9 |
12 | a |
13 | b |
14 | c |
15 | d |
16 | e |
17 | f |
¿How to convert from Octal (Base 8) to Hexadecimal (Base 16)?
Note: To convert a number from octal (base 8) to any other base, we first need to convert the octal value to decimal (base 10). To do this, follow these steps:
- Identify each digit of the octal number.
- Calculate the position of each digit. Start from the rightmost digit, which will have a position of 0. Each digit to the left will have an incremental position of 1 (1, 2, 3, etc.).
- Calculate the decimal value of each digit by multiplying it by the base (8) raised to the position of the digit. For example: digit * 8^position.
- Add up the values obtained in the previous step to get the equivalent decimal number.
Applying these steps to the octal number 237:
- 2, 3, and 7 are the digits.
- From right to left, the positions are 0, 1, and 2.
- 2 * 8^2 = 128; 3 * 8^1 = 24; 7 * 8^0 = 7.
- 128 + 24 + 7 = 159 decimal
Therefore, 237 octal = 159 decimal.

To convert a decimal number (base 10) to hexadecimal (base 16), follow these steps:
- Divide the decimal number by 16.
- Take the quotient and divide it by 16 again.
- Repeat this process until the quotient is less than 16.
- Assign a letter to each remainder if the remainder is greater than 9.
- Numbers 10, 11, 12, 13, 14, and 15 are represented by the letters A, B, C, D, E, and F, respectively.
- Write down the remainders obtained in reverse order to how they were calculated.
Applying these steps to the decimal number 159:
- 159 / 16 = 9 with a remainder of 15.
- 9 / 16 = 0 with a remainder of 9.
- 15 is represented as F.
- 9 is represented as 9.

Conversion table of Octal (Base 8) to Hexadecimal (Base 16)
Octal (Base 8) | Hexadecimal (Base 16) |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
10 | 8 |
11 | 9 |
12 | a |
13 | b |
14 | c |
15 | d |
16 | e |
17 | f |
20 | 10 |
21 | 11 |
22 | 12 |
23 | 13 |
24 | 14 |
25 | 15 |
26 | 16 |
27 | 17 |
30 | 18 |
31 | 19 |
32 | 1a |
33 | 1b |
34 | 1c |
35 | 1d |
36 | 1e |
37 | 1f |
40 | 20 |
41 | 21 |
42 | 22 |
43 | 23 |
44 | 24 |
45 | 25 |
46 | 26 |
47 | 27 |
50 | 28 |
51 | 29 |
52 | 2a |
53 | 2b |
54 | 2c |
55 | 2d |
56 | 2e |
57 | 2f |
60 | 30 |
61 | 31 |
62 | 32 |
63 | 33 |
64 | 34 |
65 | 35 |
66 | 36 |
67 | 37 |
70 | 38 |
71 | 39 |
72 | 3a |
73 | 3b |
74 | 3c |
75 | 3d |
76 | 3e |
77 | 3f |
100 | 40 |
101 | 41 |
102 | 42 |
103 | 43 |
104 | 44 |
105 | 45 |
106 | 46 |
107 | 47 |
110 | 48 |
111 | 49 |
112 | 4a |
113 | 4b |
114 | 4c |
115 | 4d |
116 | 4e |
117 | 4f |
120 | 50 |
121 | 51 |
122 | 52 |
123 | 53 |
124 | 54 |
125 | 55 |
126 | 56 |
127 | 57 |
130 | 58 |
131 | 59 |
132 | 5a |
133 | 5b |
134 | 5c |
135 | 5d |
136 | 5e |
137 | 5f |
140 | 60 |
141 | 61 |
142 | 62 |
143 | 63 |
144 | 64 |
145 | 65 |
146 | 66 |
147 | 67 |
150 | 68 |
151 | 69 |
152 | 6a |
153 | 6b |
154 | 6c |
155 | 6d |
156 | 6e |
157 | 6f |
160 | 70 |
161 | 71 |
162 | 72 |
163 | 73 |
164 | 74 |
165 | 75 |
166 | 76 |
167 | 77 |
170 | 78 |
171 | 79 |
172 | 7a |
173 | 7b |
174 | 7c |
175 | 7d |
176 | 7e |
177 | 7f |
200 | 80 |
201 | 81 |
202 | 82 |
203 | 83 |
204 | 84 |
205 | 85 |
206 | 86 |
207 | 87 |
210 | 88 |
211 | 89 |
212 | 8a |
213 | 8b |
214 | 8c |
215 | 8d |
216 | 8e |
217 | 8f |
220 | 90 |
221 | 91 |
222 | 92 |
223 | 93 |
224 | 94 |
225 | 95 |
226 | 96 |
227 | 97 |
230 | 98 |
231 | 99 |
232 | 9a |
233 | 9b |
234 | 9c |
235 | 9d |
236 | 9e |
237 | 9f |
240 | a0 |
241 | a1 |
242 | a2 |
243 | a3 |
244 | a4 |
245 | a5 |
246 | a6 |
247 | a7 |
250 | a8 |
251 | a9 |
252 | aa |
253 | ab |
254 | ac |
255 | ad |
256 | ae |
257 | af |
260 | b0 |
261 | b1 |
262 | b2 |
263 | b3 |
264 | b4 |
265 | b5 |
266 | b6 |
267 | b7 |
270 | b8 |
271 | b9 |
272 | ba |
273 | bb |
274 | bc |
275 | bd |
276 | be |
277 | bf |
300 | c0 |
301 | c1 |
302 | c2 |
303 | c3 |
304 | c4 |
305 | c5 |
306 | c6 |
307 | c7 |
310 | c8 |
311 | c9 |
312 | ca |
313 | cb |
314 | cc |
315 | cd |
316 | ce |
317 | cf |
320 | d0 |
321 | d1 |
322 | d2 |
323 | d3 |
324 | d4 |
325 | d5 |
326 | d6 |
327 | d7 |
330 | d8 |
331 | d9 |
332 | da |
333 | db |
334 | dc |
335 | dd |
336 | de |
337 | df |
340 | e0 |
341 | e1 |
342 | e2 |
343 | e3 |
344 | e4 |
345 | e5 |
346 | e6 |
347 | e7 |
350 | e8 |
351 | e9 |
352 | ea |
353 | eb |
354 | ec |
355 | ed |
356 | ee |
357 | ef |
360 | f0 |
361 | f1 |
362 | f2 |
363 | f3 |
364 | f4 |
365 | f5 |
366 | f6 |
367 | f7 |
370 | f8 |
371 | f9 |
372 | fa |
373 | fb |
374 | fc |
375 | fd |
376 | fe |
377 | ff |
400 | 100 |
401 | 101 |
402 | 102 |
403 | 103 |
404 | 104 |
405 | 105 |
406 | 106 |
407 | 107 |
410 | 108 |
411 | 109 |
412 | 10a |
413 | 10b |
414 | 10c |
415 | 10d |
416 | 10e |
417 | 10f |
420 | 110 |
421 | 111 |
422 | 112 |
423 | 113 |
424 | 114 |
425 | 115 |
426 | 116 |
427 | 117 |
430 | 118 |
431 | 119 |
432 | 11a |
433 | 11b |
434 | 11c |
435 | 11d |
436 | 11e |
437 | 11f |
440 | 120 |
441 | 121 |
442 | 122 |
443 | 123 |
444 | 124 |
445 | 125 |
446 | 126 |
447 | 127 |
450 | 128 |
451 | 129 |
452 | 12a |
453 | 12b |
454 | 12c |