Convert from Hexadecimal (Base 16) to Binary (Base 2)
Perform the conversion of numbers between different numerical systems.
Hexadecimal (Base 16) = Binary (Base 2)
Information about conversion units:
About Hexadecimal (Base 16)
The hexadecimal system reduces an eight-bit number to just two hexadecimal digits. This reduces the confusion that can arise from reading long strings of binary numbers and the amount of space required to write binary numbers.
About Binary (Base 2)
The binary system is a numbering technique that uses only two digits, 0 and 1. It is commonly used in computing. This method relies solely on two symbols, the one and the zero. Any number can be expressed in both the decimal and binary systems.
Hexadecimal (Base 16) vs Binary (Base 2)
Hexadecimal (Base 16) | Binary (Base 2) |
---|---|
0 | 0 |
1 | 1 |
2 | 10 |
3 | 11 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
8 | 1000 |
9 | 1001 |
a | 1010 |
b | 1011 |
c | 1100 |
d | 1101 |
e | 1110 |
f | 1111 |
¿How to convert from Hexadecimal (Base 16) to Binary (Base 2)?
Note: To convert a hexadecimal number (base 16) to any other base, first convert the hexadecimal value to decimal (base 10). Follow these steps:
- Identify each digit of the hexadecimal number.
- Calculate the position of each digit. Start from the rightmost digit, which will have a position of 0. Each digit to the left will have an incremental position (1, 2, 3, etc.).
- Calculate the decimal value of each digit by multiplying it by the base (16) raised to the position of the digit. For example: digit * 16^position.
- Add up the values obtained in the previous step to get the equivalent decimal number.
Applying these steps to the hexadecimal number 9F:
- 9 and F are the digits.
- Starting from the rightmost, the positions are 0 and 1.
- 9 * 16^1 = 144; F (which is 15 in decimal) * 16^0 = 15.
- 144 + 15 = 159 decimal.
So, 9F hexadecimal = 159 decimal.
Note: To convert a decimal number (base 10) to binary number (base 2), follow these steps:
- Repeatedly divide the decimal number by 2 and record the remainders of the divisions.
- The process ends when the result of the division is 0.
- The remainders of the divisions must be written in reverse order as they represent the weights of the corresponding binary digits.
Applying these steps to the decimal number 159:
Below is an example of how to convert the decimal number 159 to binary:
- Divide 159 by 2: 159 ÷ 2 = 79 with a remainder of 1.
- Divide 79 by 2: 79 ÷ 2 = 39 with a remainder of 1.
- Divide 39 by 2: 39 ÷ 2 = 19 with a remainder of 1.
- Divide 19 by 2: 19 ÷ 2 = 9 with a remainder of 1.
- Divide 9 by 2: 9 ÷ 2 = 4 with a remainder of 1.
- Divide 4 by 2: 4 ÷ 2 = 2 with a remainder of 0.
- Divide 2 by 2: 2 ÷ 2 = 1 with a remainder of 0.
- Divide 1 by 2: 1 ÷ 2 = 0 with a remainder of 1.
The remainders of the divisions are written in reverse order: 10011111.
Therefore, the number 159 in decimal converts to 10011111 in binary.
Conversion table of Hexadecimal (Base 16) to Binary (Base 2)
Hexadecimal (Base 16) | Binary (Base 2) |
---|---|
1 | 1 |
2 | 10 |
3 | 11 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
8 | 1000 |
9 | 1001 |
a | 1010 |
b | 1011 |
c | 1100 |
d | 1101 |
e | 1110 |
f | 1111 |
10 | 10000 |
11 | 10001 |
12 | 10010 |
13 | 10011 |
14 | 10100 |
15 | 10101 |
16 | 10110 |
17 | 10111 |
18 | 11000 |
19 | 11001 |
1a | 11010 |
1b | 11011 |
1c | 11100 |
1d | 11101 |
1e | 11110 |
1f | 11111 |
20 | 100000 |
21 | 100001 |
22 | 100010 |
23 | 100011 |
24 | 100100 |
25 | 100101 |
26 | 100110 |
27 | 100111 |
28 | 101000 |
29 | 101001 |
2a | 101010 |
2b | 101011 |
2c | 101100 |
2d | 101101 |
2e | 101110 |
2f | 101111 |
30 | 110000 |
31 | 110001 |
32 | 110010 |
33 | 110011 |
34 | 110100 |
35 | 110101 |
36 | 110110 |
37 | 110111 |
38 | 111000 |
39 | 111001 |
3a | 111010 |
3b | 111011 |
3c | 111100 |
3d | 111101 |
3e | 111110 |
3f | 111111 |
40 | 1000000 |
41 | 1000001 |
42 | 1000010 |
43 | 1000011 |
44 | 1000100 |
45 | 1000101 |
46 | 1000110 |
47 | 1000111 |
48 | 1001000 |
49 | 1001001 |
4a | 1001010 |
4b | 1001011 |
4c | 1001100 |
4d | 1001101 |
4e | 1001110 |
4f | 1001111 |
50 | 1010000 |
51 | 1010001 |
52 | 1010010 |
53 | 1010011 |
54 | 1010100 |
55 | 1010101 |
56 | 1010110 |
57 | 1010111 |
58 | 1011000 |
59 | 1011001 |
5a | 1011010 |
5b | 1011011 |
5c | 1011100 |
5d | 1011101 |
5e | 1011110 |
5f | 1011111 |
60 | 1100000 |
61 | 1100001 |
62 | 1100010 |
63 | 1100011 |
64 | 1100100 |
65 | 1100101 |
66 | 1100110 |
67 | 1100111 |
68 | 1101000 |
69 | 1101001 |
6a | 1101010 |
6b | 1101011 |
6c | 1101100 |
6d | 1101101 |
6e | 1101110 |
6f | 1101111 |
70 | 1110000 |
71 | 1110001 |
72 | 1110010 |
73 | 1110011 |
74 | 1110100 |
75 | 1110101 |
76 | 1110110 |
77 | 1110111 |
78 | 1111000 |
79 | 1111001 |
7a | 1111010 |
7b | 1111011 |
7c | 1111100 |
7d | 1111101 |
7e | 1111110 |
7f | 1111111 |
80 | 10000000 |
81 | 10000001 |
82 | 10000010 |
83 | 10000011 |
84 | 10000100 |
85 | 10000101 |
86 | 10000110 |
87 | 10000111 |
88 | 10001000 |
89 | 10001001 |
8a | 10001010 |
8b | 10001011 |
8c | 10001100 |
8d | 10001101 |
8e | 10001110 |
8f | 10001111 |
90 | 10010000 |
91 | 10010001 |
92 | 10010010 |
93 | 10010011 |
94 | 10010100 |
95 | 10010101 |
96 | 10010110 |
97 | 10010111 |
98 | 10011000 |
99 | 10011001 |
9a | 10011010 |
9b | 10011011 |
9c | 10011100 |
9d | 10011101 |
9e | 10011110 |
9f | 10011111 |
a0 | 10100000 |
a1 | 10100001 |
a2 | 10100010 |
a3 | 10100011 |
a4 | 10100100 |
a5 | 10100101 |
a6 | 10100110 |
a7 | 10100111 |
a8 | 10101000 |
a9 | 10101001 |
aa | 10101010 |
ab | 10101011 |
ac | 10101100 |
ad | 10101101 |
ae | 10101110 |
af | 10101111 |
b0 | 10110000 |
b1 | 10110001 |
b2 | 10110010 |
b3 | 10110011 |
b4 | 10110100 |
b5 | 10110101 |
b6 | 10110110 |
b7 | 10110111 |
b8 | 10111000 |
b9 | 10111001 |
ba | 10111010 |
bb | 10111011 |
bc | 10111100 |
bd | 10111101 |
be | 10111110 |
bf | 10111111 |
c0 | 11000000 |
c1 | 11000001 |
c2 | 11000010 |
c3 | 11000011 |
c4 | 11000100 |
c5 | 11000101 |
c6 | 11000110 |
c7 | 11000111 |
c8 | 11001000 |
c9 | 11001001 |
ca | 11001010 |
cb | 11001011 |
cc | 11001100 |
cd | 11001101 |
ce | 11001110 |
cf | 11001111 |
d0 | 11010000 |
d1 | 11010001 |
d2 | 11010010 |
d3 | 11010011 |
d4 | 11010100 |
d5 | 11010101 |
d6 | 11010110 |
d7 | 11010111 |
d8 | 11011000 |
d9 | 11011001 |
da | 11011010 |
db | 11011011 |
dc | 11011100 |
dd | 11011101 |
de | 11011110 |
df | 11011111 |
e0 | 11100000 |
e1 | 11100001 |
e2 | 11100010 |
e3 | 11100011 |
e4 | 11100100 |
e5 | 11100101 |
e6 | 11100110 |
e7 | 11100111 |
e8 | 11101000 |
e9 | 11101001 |
ea | 11101010 |
eb | 11101011 |
ec | 11101100 |
ed | 11101101 |
ee | 11101110 |
ef | 11101111 |
f0 | 11110000 |
f1 | 11110001 |
f2 | 11110010 |
f3 | 11110011 |
f4 | 11110100 |
f5 | 11110101 |
f6 | 11110110 |
f7 | 11110111 |
f8 | 11111000 |
f9 | 11111001 |
fa | 11111010 |
fb | 11111011 |
fc | 11111100 |
fd | 11111101 |
fe | 11111110 |
ff | 11111111 |
100 | 100000000 |
101 | 100000001 |
102 | 100000010 |
103 | 100000011 |
104 | 100000100 |
105 | 100000101 |
106 | 100000110 |
107 | 100000111 |
108 | 100001000 |
109 | 100001001 |
10a | 100001010 |
10b | 100001011 |
10c | 100001100 |
10d | 100001101 |
10e | 100001110 |
10f | 100001111 |
110 | 100010000 |
111 | 100010001 |
112 | 100010010 |
113 | 100010011 |
114 | 100010100 |
115 | 100010101 |
116 | 100010110 |
117 | 100010111 |
118 | 100011000 |
119 | 100011001 |
11a | 100011010 |
11b | 100011011 |
11c | 100011100 |
11d | 100011101 |
11e | 100011110 |
11f | 100011111 |
120 | 100100000 |
121 | 100100001 |
122 | 100100010 |
123 | 100100011 |
124 | 100100100 |
125 | 100100101 |
126 | 100100110 |
127 | 100100111 |
128 | 100101000 |
129 | 100101001 |
12a | 100101010 |
12b | 100101011 |
12c | 100101100 |