Convert from Octal (Base 8) to Binary (Base 2)

Perform the conversion of numbers between different numerical systems.

Octal (Base 8) = Binary (Base 2)

Convert from Binary (Base 2) to Octal (Base 8)

Information about conversion units:

About Octal (Base 8)

The octal system is the positional numeral system with a base of 8, using the Arabic-Indic digits: 0, 1, 2, 3, 4, 5, 6, 7. In computing, octal numbering is sometimes used instead of hexadecimal. It has the advantage of not requiring symbols other than digits.

About Binary (Base 2)

The binary system is a numbering technique that uses only two digits, 0 and 1. It is commonly used in computing. This method relies solely on two symbols, the one and the zero. Any number can be expressed in both the decimal and binary systems.

Octal (Base 8) vs Binary (Base 2)

Octal (Base 8)Binary (Base 2)
00
11
210
311
4100
5101
6110
7111

¿How to convert from Octal (Base 8) to Binary (Base 2)?

Note: To convert a number from octal (base 8) to any other base, we first need to convert the octal value to decimal (base 10). To do this, follow these steps:

  1. Identify each digit of the octal number.
  2. Calculate the position of each digit. Start from the rightmost digit, which will have a position of 0. Each digit to the left will have an incremental position of 1 (1, 2, 3, etc.).
  3. Calculate the decimal value of each digit by multiplying it by the base (8) raised to the position of the digit. For example: digit * 8^position.
  4. Add up the values obtained in the previous step to get the equivalent decimal number.

Applying these steps to the octal number 237:

  1. 2, 3, and 7 are the digits.
  2. From right to left, the positions are 0, 1, and 2.
  3. 2 * 8^2 = 128; 3 * 8^1 = 24; 7 * 8^0 = 7.
  4. 128 + 24 + 7 = 159 decimal

Therefore, 237 octal = 159 decimal.

Visual example of the procedure to convert an octal number to decimal.

Note: To convert a decimal number (base 10) to binary number (base 2), follow these steps:

  1. Repeatedly divide the decimal number by 2 and record the remainders of the divisions.
  2. The process ends when the result of the division is 0.
  3. The remainders of the divisions must be written in reverse order as they represent the weights of the corresponding binary digits.

Applying these steps to the decimal number 159:

Below is an example of how to convert the decimal number 159 to binary:

  1. Divide 159 by 2: 159 ÷ 2 = 79 with a remainder of 1.
  2. Divide 79 by 2: 79 ÷ 2 = 39 with a remainder of 1.
  3. Divide 39 by 2: 39 ÷ 2 = 19 with a remainder of 1.
  4. Divide 19 by 2: 19 ÷ 2 = 9 with a remainder of 1.
  5. Divide 9 by 2: 9 ÷ 2 = 4 with a remainder of 1.
  6. Divide 4 by 2: 4 ÷ 2 = 2 with a remainder of 0.
  7. Divide 2 by 2: 2 ÷ 2 = 1 with a remainder of 0.
  8. Divide 1 by 2: 1 ÷ 2 = 0 with a remainder of 1.

The remainders of the divisions are written in reverse order: 10011111.

Therefore, the number 159 in decimal converts to 10011111 in binary.

Steps to convert a number from base 10 (Decimal) to base 2 (Binary).

Conversion table of Octal (Base 8) to Binary (Base 2)

Octal (Base 8) Binary (Base 2)
11
210
311
4100
5101
6110
7111
101000
111001
121010
131011
141100
151101
161110
171111
2010000
2110001
2210010
2310011
2410100
2510101
2610110
2710111
3011000
3111001
3211010
3311011
3411100
3511101
3611110
3711111
40100000
41100001
42100010
43100011
44100100
45100101
46100110
47100111
50101000
51101001
52101010
53101011
54101100
55101101
56101110
57101111
60110000
61110001
62110010
63110011
64110100
65110101
66110110
67110111
70111000
71111001
72111010
73111011
74111100
75111101
76111110
77111111
1001000000
1011000001
1021000010
1031000011
1041000100
1051000101
1061000110
1071000111
1101001000
1111001001
1121001010
1131001011
1141001100
1151001101
1161001110
1171001111
1201010000
1211010001
1221010010
1231010011
1241010100
1251010101
1261010110
1271010111
1301011000
1311011001
1321011010
1331011011
1341011100
1351011101
1361011110
1371011111
1401100000
1411100001
1421100010
1431100011
1441100100
1451100101
1461100110
1471100111
1501101000
1511101001
1521101010
1531101011
1541101100
1551101101
1561101110
1571101111
1601110000
1611110001
1621110010
1631110011
1641110100
1651110101
1661110110
1671110111
1701111000
1711111001
1721111010
1731111011
1741111100
1751111101
1761111110
1771111111
20010000000
20110000001
20210000010
20310000011
20410000100
20510000101
20610000110
20710000111
21010001000
21110001001
21210001010
21310001011
21410001100
21510001101
21610001110
21710001111
22010010000
22110010001
22210010010
22310010011
22410010100
22510010101
22610010110
22710010111
23010011000
23110011001
23210011010
23310011011
23410011100
23510011101
23610011110
23710011111
24010100000
24110100001
24210100010
24310100011
24410100100
24510100101
24610100110
24710100111
25010101000
25110101001
25210101010
25310101011
25410101100
25510101101
25610101110
25710101111
26010110000
26110110001
26210110010
26310110011
26410110100
26510110101
26610110110
26710110111
27010111000
27110111001
27210111010
27310111011
27410111100
27510111101
27610111110
27710111111
30011000000
30111000001
30211000010
30311000011
30411000100
30511000101
30611000110
30711000111
31011001000
31111001001
31211001010
31311001011
31411001100
31511001101
31611001110
31711001111
32011010000
32111010001
32211010010
32311010011
32411010100
32511010101
32611010110
32711010111
33011011000
33111011001
33211011010
33311011011
33411011100
33511011101
33611011110
33711011111
34011100000
34111100001
34211100010
34311100011
34411100100
34511100101
34611100110
34711100111
35011101000
35111101001
35211101010
35311101011
35411101100
35511101101
35611101110
35711101111
36011110000
36111110001
36211110010
36311110011
36411110100
36511110101
36611110110
36711110111
37011111000
37111111001
37211111010
37311111011
37411111100
37511111101
37611111110
37711111111
400100000000
401100000001
402100000010
403100000011
404100000100
405100000101
406100000110
407100000111
410100001000
411100001001
412100001010
413100001011
414100001100
415100001101
416100001110
417100001111
420100010000
421100010001
422100010010
423100010011
424100010100
425100010101
426100010110
427100010111
430100011000
431100011001
432100011010
433100011011
434100011100
435100011101
436100011110
437100011111
440100100000
441100100001
442100100010
443100100011
444100100100
445100100101
446100100110
447100100111
450100101000
451100101001
452100101010
453100101011
454100101100