Convert from Hexadecimal (Base 16) to Octal (Base 8)
Perform the conversion of numbers between different numerical systems.
Hexadecimal (Base 16) = Octal (Base 8)
Information about conversion units:
About Hexadecimal (Base 16)
The hexadecimal system reduces an eight-bit number to just two hexadecimal digits. This reduces the confusion that can arise from reading long strings of binary numbers and the amount of space required to write binary numbers.
About Octal (Base 8)
The octal system is the positional numeral system with a base of 8, using the Arabic-Indic digits: 0, 1, 2, 3, 4, 5, 6, 7. In computing, octal numbering is sometimes used instead of hexadecimal. It has the advantage of not requiring symbols other than digits.
Hexadecimal (Base 16) vs Octal (Base 8)
Hexadecimal (Base 16) | Octal (Base 8) |
---|---|
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 10 |
9 | 11 |
a | 12 |
b | 13 |
c | 14 |
d | 15 |
e | 16 |
f | 17 |
¿How to convert from Hexadecimal (Base 16) to Octal (Base 8)?
Note: To convert a hexadecimal number (base 16) to any other base, first convert the hexadecimal value to decimal (base 10). Follow these steps:
- Identify each digit of the hexadecimal number.
- Calculate the position of each digit. Start from the rightmost digit, which will have a position of 0. Each digit to the left will have an incremental position (1, 2, 3, etc.).
- Calculate the decimal value of each digit by multiplying it by the base (16) raised to the position of the digit. For example: digit * 16^position.
- Add up the values obtained in the previous step to get the equivalent decimal number.
Applying these steps to the hexadecimal number 9F:
- 9 and F are the digits.
- Starting from the rightmost, the positions are 0 and 1.
- 9 * 16^1 = 144; F (which is 15 in decimal) * 16^0 = 15.
- 144 + 15 = 159 decimal.
So, 9F hexadecimal = 159 decimal.
Note: To convert a decimal number (base 10) to an octal number (base 8), follow these steps:
- Divide the decimal number by 8 and record the remainders of the divisions until the division result is 0.
- The remainders from the divisions should be written in reverse order as they were obtained, as they represent the weights of the corresponding octal digits.
Here's an example of converting the decimal number 159 to octal:
- Divide 159 by 8: 159 ÷ 8 = 19 with a remainder of 7.
- Divide 19 by 8: 19 ÷ 8 = 2 with a remainder of 3.
- Divide 2 by 8: 2 ÷ 8 = 0 with a remainder of 2.
The remainders of the divisions are written in reverse order: 237.
Therefore, the decimal number 159 converts to 237 in octal.
Conversion table of Hexadecimal (Base 16) to Octal (Base 8)
Hexadecimal (Base 16) | Octal (Base 8) |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 10 |
9 | 11 |
a | 12 |
b | 13 |
c | 14 |
d | 15 |
e | 16 |
f | 17 |
10 | 20 |
11 | 21 |
12 | 22 |
13 | 23 |
14 | 24 |
15 | 25 |
16 | 26 |
17 | 27 |
18 | 30 |
19 | 31 |
1a | 32 |
1b | 33 |
1c | 34 |
1d | 35 |
1e | 36 |
1f | 37 |
20 | 40 |
21 | 41 |
22 | 42 |
23 | 43 |
24 | 44 |
25 | 45 |
26 | 46 |
27 | 47 |
28 | 50 |
29 | 51 |
2a | 52 |
2b | 53 |
2c | 54 |
2d | 55 |
2e | 56 |
2f | 57 |
30 | 60 |
31 | 61 |
32 | 62 |
33 | 63 |
34 | 64 |
35 | 65 |
36 | 66 |
37 | 67 |
38 | 70 |
39 | 71 |
3a | 72 |
3b | 73 |
3c | 74 |
3d | 75 |
3e | 76 |
3f | 77 |
40 | 100 |
41 | 101 |
42 | 102 |
43 | 103 |
44 | 104 |
45 | 105 |
46 | 106 |
47 | 107 |
48 | 110 |
49 | 111 |
4a | 112 |
4b | 113 |
4c | 114 |
4d | 115 |
4e | 116 |
4f | 117 |
50 | 120 |
51 | 121 |
52 | 122 |
53 | 123 |
54 | 124 |
55 | 125 |
56 | 126 |
57 | 127 |
58 | 130 |
59 | 131 |
5a | 132 |
5b | 133 |
5c | 134 |
5d | 135 |
5e | 136 |
5f | 137 |
60 | 140 |
61 | 141 |
62 | 142 |
63 | 143 |
64 | 144 |
65 | 145 |
66 | 146 |
67 | 147 |
68 | 150 |
69 | 151 |
6a | 152 |
6b | 153 |
6c | 154 |
6d | 155 |
6e | 156 |
6f | 157 |
70 | 160 |
71 | 161 |
72 | 162 |
73 | 163 |
74 | 164 |
75 | 165 |
76 | 166 |
77 | 167 |
78 | 170 |
79 | 171 |
7a | 172 |
7b | 173 |
7c | 174 |
7d | 175 |
7e | 176 |
7f | 177 |
80 | 200 |
81 | 201 |
82 | 202 |
83 | 203 |
84 | 204 |
85 | 205 |
86 | 206 |
87 | 207 |
88 | 210 |
89 | 211 |
8a | 212 |
8b | 213 |
8c | 214 |
8d | 215 |
8e | 216 |
8f | 217 |
90 | 220 |
91 | 221 |
92 | 222 |
93 | 223 |
94 | 224 |
95 | 225 |
96 | 226 |
97 | 227 |
98 | 230 |
99 | 231 |
9a | 232 |
9b | 233 |
9c | 234 |
9d | 235 |
9e | 236 |
9f | 237 |
a0 | 240 |
a1 | 241 |
a2 | 242 |
a3 | 243 |
a4 | 244 |
a5 | 245 |
a6 | 246 |
a7 | 247 |
a8 | 250 |
a9 | 251 |
aa | 252 |
ab | 253 |
ac | 254 |
ad | 255 |
ae | 256 |
af | 257 |
b0 | 260 |
b1 | 261 |
b2 | 262 |
b3 | 263 |
b4 | 264 |
b5 | 265 |
b6 | 266 |
b7 | 267 |
b8 | 270 |
b9 | 271 |
ba | 272 |
bb | 273 |
bc | 274 |
bd | 275 |
be | 276 |
bf | 277 |
c0 | 300 |
c1 | 301 |
c2 | 302 |
c3 | 303 |
c4 | 304 |
c5 | 305 |
c6 | 306 |
c7 | 307 |
c8 | 310 |
c9 | 311 |
ca | 312 |
cb | 313 |
cc | 314 |
cd | 315 |
ce | 316 |
cf | 317 |
d0 | 320 |
d1 | 321 |
d2 | 322 |
d3 | 323 |
d4 | 324 |
d5 | 325 |
d6 | 326 |
d7 | 327 |
d8 | 330 |
d9 | 331 |
da | 332 |
db | 333 |
dc | 334 |
dd | 335 |
de | 336 |
df | 337 |
e0 | 340 |
e1 | 341 |
e2 | 342 |
e3 | 343 |
e4 | 344 |
e5 | 345 |
e6 | 346 |
e7 | 347 |
e8 | 350 |
e9 | 351 |
ea | 352 |
eb | 353 |
ec | 354 |
ed | 355 |
ee | 356 |
ef | 357 |
f0 | 360 |
f1 | 361 |
f2 | 362 |
f3 | 363 |
f4 | 364 |
f5 | 365 |
f6 | 366 |
f7 | 367 |
f8 | 370 |
f9 | 371 |
fa | 372 |
fb | 373 |
fc | 374 |
fd | 375 |
fe | 376 |
ff | 377 |
100 | 400 |
101 | 401 |
102 | 402 |
103 | 403 |
104 | 404 |
105 | 405 |
106 | 406 |
107 | 407 |
108 | 410 |
109 | 411 |
10a | 412 |
10b | 413 |
10c | 414 |
10d | 415 |
10e | 416 |
10f | 417 |
110 | 420 |
111 | 421 |
112 | 422 |
113 | 423 |
114 | 424 |
115 | 425 |
116 | 426 |
117 | 427 |
118 | 430 |
119 | 431 |
11a | 432 |
11b | 433 |
11c | 434 |
11d | 435 |
11e | 436 |
11f | 437 |
120 | 440 |
121 | 441 |
122 | 442 |
123 | 443 |
124 | 444 |
125 | 445 |
126 | 446 |
127 | 447 |
128 | 450 |
129 | 451 |
12a | 452 |
12b | 453 |
12c | 454 |