Convert from Binary (Base 2) to Romano (Romano)
On this page you can perform the conversion of units of Binary (Base 2) to Romano (Romano)
Information on conversion units:
About Binary (Base 2):
The binary system is a numbering technique where only two digits, 0 and 1, are used. It is particularly used in computing. In other words, this method uses only two symbols, the unit and the zero. Any number can be expressed in either the decimal or the binary system.
About Romano (Romano):
Le système romain est un ancien système numérique utilisé dans l'Empire romain. Dans ce système, les lettres sont utilisées pour représenter les nombres, les lettres les plus utilisées étant I, V, X, L, C, D et M. Chaque lettre a une valeur numérique spécifique et se combinent de certaines façons pour former des nombres. Contrairement au système décimal, le système romain n'a pas de représentation native de chiffre zéro. C'est-à-dire qu'il n'y a pas de symbole spécifique pour zéro dans le système romain. Malgré cela, le système romain continue d'être utilisé dans certains contextes, tels que le numéro des années dans certains calendriers.
Binary (Base 2) vs Romano (Romano)
Binary (Base 2) | Decimal (Base 10) | Romano (Romano) |
---|---|---|
1 | 1 | I |
100 | 4 | IV |
101 | 5 | V |
1001 | 9 | IX |
1010 | 10 | X |
101000 | 40 | XL |
110010 | 50 | L |
1011010 | 90 | XC |
1100100 | 100 | C |
110010000 | 400 | CD |
111110100 | 500 | D |
1110000100 | 900 | CM |
1111101000 | 1000 | M |
111110100000 | 4000 | IV |
1001110001000 | 5000 | V |
10001100101000 | 9000 | IX |
10011100010000 | 10000 | X |
1001110001000000 | 40000 | XL |
1100001101010000 | 50000 | L |
10101111110010000 | 90000 | XC |
11000011010100000 | 100000 | C |
1100001101010000000 | 400000 | CD |
1111010000100100000 | 500000 | D |
11011011101110100000 | 900000 | CM |
11110100001001000000 | 1000000 | M |
¿How to convert from Binary (Base 2) to Romano (Romano)?
Note: To convert a number in binary (base 2) to any other base, we must first convert the binary value to decimal base (base 10), for this we must perform the following steps:
- Identify each digit of the binary number.
- Calculate the position of each digit. Start from the rightmost digit, which will have a position of 0. Each digit to the left will have an incremental position of 1 (1, 2, 3, etc.).
- Calculate the decimal value of each digit by multiplying it by the base (2) raised to the digit's position. For example: digit * 2^position.
- Add the values obtained in the previous step to obtain the equivalent decimal number.
Applying these steps to the binary number 10011111:
Let's see how to pass the binary number 10011111 to decimal.
- 1, 0, 0, 1, 1, 1, 1, 1, 1 and 1 are the digits.
- From the rightmost, the position is 0, 1, 2, 3, 3, 4, 5, 6 and 7.
- 1 * 2^7 = 128; 0 * 2^6 = 0; 0 * 2^5 = 0; 1 * 2^4 = 16; 1 * 2^3 = 8; 1 * 2^2 = 4; 1 * 2^1 = 2; 1 * 2^0 = 1;
- 128 + 0 + 0 + 0 + 16 + 8 + 8 + 4 + 2 + 1 = 159 decimal.
So, 10011111 binary = 159 decimal.

To convert the decimal number to a Roman numeral, we must follow a series of rules:
Roman numerals and their basic rules.
- The Roman numerals I, X, C, and M can repeat up to three times when writing a composite Roman numeral.
- The Roman numerals V, L, and D can never repeat.
- If a composite Roman numeral has a number on the right smaller than the one on the left, then both are added. Example: XI: the right number (I = 1) is smaller than the left number (X = 10), so they are added, that is XI = 11.
- If a composite Roman numeral has a number on the right greater than the one on the left and this is an I, X or C, then the left is subtracted from the right. Example: IX: the right number (X = 10) is greater than the left number (I = 1) and it is also an I, then the left is subtracted from the right, that is IX = 9.
- If a Roman numeral has a line over it, then its value is multiplied by a thousand. Example: IX
: the number is 9,000 since it is the Roman numeral representing 9 and with the line over it it is multiplied by a thousand.

Steps to convert the decimal number 159 into a Roman numeral:
- Break down the number into units, in this case: 100, 50, and 9.
- Translate using the table, each decimal number to its equivalent Roman numeral. in this case: C=100, L=50 and IX=9.
- We write the result from highest to lowest unit or from left to right: CLIX.
As a result, we can say that the decimal number 159 is equal to CLIX in Roman numeral.

Conversion table from Binary (Base 2) to Romano (Romano)
Binary (Base 2) | Romano (Romano) |
---|---|
1 | I |
10 | II |
11 | III |
100 | IV |
101 | V |
110 | VI |
111 | VII |
1000 | VIII |
1001 | IX |
1010 | X |
1011 | XI |
1100 | XII |
1101 | XIII |
1110 | XIV |
1111 | XV |
10000 | XVI |
10001 | XVII |
10010 | XVIII |
10011 | XIX |
10100 | XX |
10101 | XXI |
10110 | XXII |
10111 | XXIII |
11000 | XXIV |
11001 | XXV |
11010 | XXVI |
11011 | XXVII |
11100 | XXVIII |
11101 | XXIX |
11110 | XXX |
11111 | XXXI |
100000 | XXXII |
100001 | XXXIII |
100010 | XXXIV |
100011 | XXXV |
100100 | XXXVI |
100101 | XXXVII |
100110 | XXXVIII |
100111 | XXXIX |
101000 | XL |
101001 | XLI |
101010 | XLII |
101011 | XLIII |
101100 | XLIV |
101101 | XLV |
101110 | XLVI |
101111 | XLVII |
110000 | XLVIII |
110001 | XLIX |
110010 | L |
110011 | LI |
110100 | LII |
110101 | LIII |
110110 | LIV |
110111 | LV |
111000 | LVI |
111001 | LVII |
111010 | LVIII |
111011 | LIX |
111100 | LX |
111101 | LXI |
111110 | LXII |
111111 | LXIII |
1000000 | LXIV |
1000001 | LXV |
1000010 | LXVI |
1000011 | LXVII |
1000100 | LXVIII |
1000101 | LXIX |
1000110 | LXX |
1000111 | LXXI |
1001000 | LXXII |
1001001 | LXXIII |
1001010 | LXXIV |
1001011 | LXXV |
1001100 | LXXVI |
1001101 | LXXVII |
1001110 | LXXVIII |
1001111 | LXXIX |
1010000 | LXXX |
1010001 | LXXXI |
1010010 | LXXXII |
1010011 | LXXXIII |
1010100 | LXXXIV |
1010101 | LXXXV |
1010110 | LXXXVI |
1010111 | LXXXVII |
1011000 | LXXXVIII |
1011001 | LXXXIX |
1011010 | XC |
1011011 | XCI |
1011100 | XCII |
1011101 | XCIII |
1011110 | XCIV |
1011111 | XCV |
1100000 | XCVI |
1100001 | XCVII |
1100010 | XCVIII |
1100011 | XCIX |
1100100 | C |
1100101 | CI |
1100110 | CII |
1100111 | CIII |
1101000 | CIV |
1101001 | CV |
1101010 | CVI |
1101011 | CVII |
1101100 | CVIII |
1101101 | CIX |
1101110 | CX |
1101111 | CXI |
1110000 | CXII |
1110001 | CXIII |
1110010 | CXIV |
1110011 | CXV |
1110100 | CXVI |
1110101 | CXVII |
1110110 | CXVIII |
1110111 | CXIX |
1111000 | CXX |
1111001 | CXXI |
1111010 | CXXII |
1111011 | CXXIII |
1111100 | CXXIV |
1111101 | CXXV |
1111110 | CXXVI |
1111111 | CXXVII |
10000000 | CXXVIII |
10000001 | CXXIX |
10000010 | CXXX |
10000011 | CXXXI |
10000100 | CXXXII |
10000101 | CXXXIII |
10000110 | CXXXIV |
10000111 | CXXXV |
10001000 | CXXXVI |
10001001 | CXXXVII |
10001010 | CXXXVIII |
10001011 | CXXXIX |
10001100 | CXL |
10001101 | CXLI |
10001110 | CXLII |
10001111 | CXLIII |
10010000 | CXLIV |
10010001 | CXLV |
10010010 | CXLVI |
10010011 | CXLVII |
10010100 | CXLVIII |
10010101 | CXLIX |
10010110 | CL |
10010111 | CLI |
10011000 | CLII |
10011001 | CLIII |
10011010 | CLIV |
10011011 | CLV |
10011100 | CLVI |
10011101 | CLVII |
10011110 | CLVIII |
10011111 | CLIX |
10100000 | CLX |
10100001 | CLXI |
10100010 | CLXII |
10100011 | CLXIII |
10100100 | CLXIV |
10100101 | CLXV |
10100110 | CLXVI |
10100111 | CLXVII |
10101000 | CLXVIII |
10101001 | CLXIX |
10101010 | CLXX |
10101011 | CLXXI |
10101100 | CLXXII |
10101101 | CLXXIII |
10101110 | CLXXIV |
10101111 | CLXXV |
10110000 | CLXXVI |
10110001 | CLXXVII |
10110010 | CLXXVIII |
10110011 | CLXXIX |
10110100 | CLXXX |
10110101 | CLXXXI |
10110110 | CLXXXII |
10110111 | CLXXXIII |
10111000 | CLXXXIV |
10111001 | CLXXXV |
10111010 | CLXXXVI |
10111011 | CLXXXVII |
10111100 | CLXXXVIII |
10111101 | CLXXXIX |
10111110 | CXC |
10111111 | CXCI |
11000000 | CXCII |
11000001 | CXCIII |
11000010 | CXCIV |
11000011 | CXCV |
11000100 | CXCVI |
11000101 | CXCVII |
11000110 | CXCVIII |
11000111 | CXCIX |
11001000 | CC |
11001001 | CCI |
11001010 | CCII |
11001011 | CCIII |
11001100 | CCIV |
11001101 | CCV |
11001110 | CCVI |
11001111 | CCVII |
11010000 | CCVIII |
11010001 | CCIX |
11010010 | CCX |
11010011 | CCXI |
11010100 | CCXII |
11010101 | CCXIII |
11010110 | CCXIV |
11010111 | CCXV |
11011000 | CCXVI |
11011001 | CCXVII |
11011010 | CCXVIII |
11011011 | CCXIX |
11011100 | CCXX |
11011101 | CCXXI |
11011110 | CCXXII |
11011111 | CCXXIII |
11100000 | CCXXIV |
11100001 | CCXXV |
11100010 | CCXXVI |
11100011 | CCXXVII |
11100100 | CCXXVIII |
11100101 | CCXXIX |
11100110 | CCXXX |
11100111 | CCXXXI |
11101000 | CCXXXII |
11101001 | CCXXXIII |
11101010 | CCXXXIV |
11101011 | CCXXXV |
11101100 | CCXXXVI |
11101101 | CCXXXVII |
11101110 | CCXXXVIII |
11101111 | CCXXXIX |
11110000 | CCXL |
11110001 | CCXLI |
11110010 | CCXLII |
11110011 | CCXLIII |
11110100 | CCXLIV |
11110101 | CCXLV |
11110110 | CCXLVI |
11110111 | CCXLVII |
11111000 | CCXLVIII |
11111001 | CCXLIX |
11111010 | CCL |
11111011 | CCLI |
11111100 | CCLII |
11111101 | CCLIII |
11111110 | CCLIV |
11111111 | CCLV |
100000000 | CCLVI |
100000001 | CCLVII |
100000010 | CCLVIII |
100000011 | CCLIX |
100000100 | CCLX |
100000101 | CCLXI |
100000110 | CCLXII |
100000111 | CCLXIII |
100001000 | CCLXIV |
100001001 | CCLXV |
100001010 | CCLXVI |
100001011 | CCLXVII |
100001100 | CCLXVIII |
100001101 | CCLXIX |
100001110 | CCLXX |
100001111 | CCLXXI |
100010000 | CCLXXII |
100010001 | CCLXXIII |
100010010 | CCLXXIV |
100010011 | CCLXXV |
100010100 | CCLXXVI |
100010101 | CCLXXVII |
100010110 | CCLXXVIII |
100010111 | CCLXXIX |
100011000 | CCLXXX |
100011001 | CCLXXXI |
100011010 | CCLXXXII |
100011011 | CCLXXXIII |
100011100 | CCLXXXIV |
100011101 | CCLXXXV |
100011110 | CCLXXXVI |
100011111 | CCLXXXVII |
100100000 | CCLXXXVIII |
100100001 | CCLXXXIX |
100100010 | CCXC |
100100011 | CCXCI |
100100100 | CCXCII |
100100101 | CCXCIII |
100100110 | CCXCIV |
100100111 | CCXCV |
100101000 | CCXCVI |
100101001 | CCXCVII |
100101010 | CCXCVIII |
100101011 | CCXCIX |
100101100 | CCC |